
Mimblewimble and Scriptless Scripts

Andrew Poelstra

grindelwald@wpsoftware.net

January 10, 2018

1 / 25



What is a Blockchain?

For our purposes, a blockchain is a Merkleized linked list of
commitments, called blocks, along with rules restricting the
committed data.

(Also, critical but irrelevant magic, there is global consensus
on what this list is.)

In Bitcoin the blocks are Merkle trees of transactions, each of
which may not conflict with any other across the entire chain.

2 / 25



What is Mimblewimble?

Anyone can download the blockchain, validate all the
committed data, and determine the current system state, the
unspent transaction output set (utxoset).

Basically every cryptocurrency uses this model, up to
structure and naming of the system state.

Mimblewimble, proposed in August 2016 by Tom Elvis
Jedusor, is an alternate design where transaction data
eventually becomes irrelevant and can be dropped, even for
new validators.

3 / 25



Talk Outline

1 How are Mimblewimble transactions structured to enable this
redundancy?

Hint: they are restricted to be very simple.

2 How, despite these restrictions, can we still execute trustless
multiparty cryptosystems (“smart contracts”)?

4 / 25



Confidential Transactions and Pedersen Commitments

Given a dollar value v ∈ Z/qZ, choose uniformly random
r ∈ Z/qZ and compute

C = vH + rG

where H, G ∈ G ' Z/qZ are generators of a DL-hard group.

Attach a rangeproof that v << q, i.e. our amounts are in the
part of Z/qZ that basically acts like Z+.

Replace all the amounts in a Bitcoin transaction with Pedersen
commitments; verifiers check for each transaction that∑

C∈inputs
C =

∑
C∈outputs

C

5 / 25



Mimblewimble: Transactions

Observe that the blinding factors r in the input commitments
must sum to the blinding factors in the output commitments.

Therefore it is impossible to construct a transaction without
knowing the sum of its inputs’ blinding factors, each of which
should be secret.

Mimblewimble: drop all other forms of authentication and just
do this.

6 / 25



Mimblewimble: Kernels

This almost works, except that parties within the same
transaction would learn about each others’ secret blinding
factors r . (Sum of one party’s blinding factors equals the sum
of the other’s.)

By adding an unspendable 0-valued output to each
transaction, called a kernel, multiple parties can produce a
transaction together without anyone learning each others’
secret r values.

Each participant i chooses a blinding factor ρi and sets the
kernel commitment to K =

∑
i ρiG . They produce a

multisignature with this key to authenticate the transaction
and prove that K is 0-valued.

7 / 25



Mimblewimble in Pictures

8 / 25



Mimblewimble in Pictures

9 / 25



Mimblewimble in Pictures

10 / 25



Mimblewimble in Pictures

11 / 25



Mimblewimble in Pictures

12 / 25



Mimblewimble in Pictures

13 / 25



Mimblewimble in Pictures

14 / 25



Mimblewimble in Pictures

15 / 25



Mimblewimble Scaling: Real Numbers

In Bitcoin there are 150 million transactions with about 400
million outputs, 65 million of which are unspent.

This takes about 180Gb of space on disk today; with CT this
would increase by another 270Gb.

MimbleWimble gives us CT and requires storing: 18Gb of
transaction kernels, headers etc.; 2Gb of unspent outputs, and
45Gb of UTXO rangeproofs.

16 / 25



“Scriptless Scripts”

Scriptless scripts: magicking digital signatures so that they
can only be created by faithful execution of a smart contract.

Limited in power, but not nearly as much as you might expect.

Mimblewimble, having no permanent data except kernels and
their signatures, supports only scriptless scripts, But anything
that supports Schnorr signatures will support scriptless scripts.

17 / 25



Why use Scriptless Scripts?

Bitcoin (and Ethereum, etc.) uses a scripting language to
describe smart contracts and enforce their execution.

These scripts must be downloaded, parsed, validated by all full
nodes on the network. Can’t be compressed or aggregated.

The details of the script are visible forever, compromising
privacy and fungibility.

With scriptless scripts, the only visible things are public keys
(i.e. uniformly random curvepoints) and digital signatures.

18 / 25



Schnorr Signatures Support Scriptless Scripts

Basic Schnorr multisignature: signers have keypairs (xi ,Pi )
with Pi = xiG .

Agree on a message, compute uniformly random Ri = kiG ,
and exchange Ri .

Each computes R =
∑

i Ri , P =
∑

i Pi , e = H(P‖R‖m), and
si = ki + exi .

Signature is (s,R) with s =
∑

i si . Validates as sG = P + eR.

(Here we ignore key cancellation attacks etc. Be careful!)

19 / 25



Schnorr multi-Signatures are Scriptless Scripts

Observe that this multisignature is already a scriptless script:
the signing parties agree on a set {Pi} of keys, but blockchain
validators see only the sum P and don’t care about the details.

Can be generalized to m-of-n by linear secret sharing.

In general, scriptless scripts will derive their power from these
signatures being (verifiably) linear in all secret inputs.

20 / 25



Adaptor Signatures

Consider the Schnorr multisignature construction, modified
such that the first party generates T1 = t1G . In place of R1 it
passes R1 + T1 to the other parties. Alongside s1 it passes T1.
Nothing else changes

We call the set (T1,T1 + R1, s1) an adaptor signature.

The final signature (s,R) isn’t valid, but (s + t1,R) is.

Before signing, the other parti(es) verify s1G = R1 + eP1, and
therefore that knowledge of t1 will be equivalent to knowledge
of a valid signature.

21 / 25



Features of Adaptor Signatures

By attaching auxiliary proofs to T1 to ensure t1 is some
necessary data for a separate protocol, arbitrary steps of
arbitrary protocols can be made equivalent to signature
production.

In a blockchain context, this means parties can be trustlessly
paid for continued honest participation.

In particular, by using the same T1 in multiple adaptor
signatures it is possible to make arbitrary sets of signatures
atomic, as we will see in the next example. Extremely cheap.

After a signature hits the chain, anyone can make up a T1

and compute a corresponding “adaptor signature” for it, so
such schemes are deniable/private.

22 / 25



Example: Atomic (Cross-chain) Swaps

Suppose Alice wants to trade 10 A-coins for 5 of Bob’s
B-coins.

On their respective chains, each moves the coins to outputs
that can only be spent by a 2-of-2 multisignature with both
Alice and Bob.

They do sign the multisignature protocols in parallel, except
that in both cases Bob gives Alice adaptor signatures using
the same T1.

Bob replaces one of the signatures (s,R) with (s + t1,R) and
publishes it, to take his coins. Alice sees this, learns t1, then
does the same thing on the other chain to take her coins.

23 / 25



Open Problems

Quantum-resistant analogues to all this

Scriptless scripts with more than 2 parties

Formalizing/understanding limits of scriptless scripts

24 / 25



Thank You

Andrew Poelstra <grindelwald@wpsoftware.net>

25 / 25


