
Mimblewimble and Scriptless Scripts

Andrew Poelstra

grindelwald@wpsoftware.net

June 15, 2017

1 / 30



Overview / What is Mimblewimble?

Mimblewimble is an anonymously-originated design for a
blockchain-based ledger that is very different from Bitcoin.

Unlike Bitcoin transactions, transaction verification can be
done with only “kernels”, which are multisignature keys of the
transactors. The inputs and outputs are auxiliary and can be
deleted.

To allow this deletion, Mimblewimble outputs (and inputs) are
inherently scriptless.

However, smart contracting in Mimblewimble is still possible
using “scriptless scripts”. These are more efficient and private
than ordinary Bitcoin or Ethereum scripts, and can potentially
be used with those blockchains.

2 / 30



An Anonymous History of Blockchain Tech

November 2008: Satoshi Nakamoto announces Bitcoin; first
client released January 2009

December 2012: Nicolas van Saberhagen announces Bytecoin,
using ring signatures to enhance transaction privacy

September 2013: Horaus Yuan Mouton announces “OWAS”,
a pre-Mimblewimble technology whitepaper that uses
pairing-based cryptography

August 2014: sundance describes “Byzantine Cycle Mode”, a
method to improve Greg Maxwell’s CoinJoin by better hiding
transaction amounts.

3 / 30



An Anonymous History of Blockchain Tech

August 2016: Tom Elvis Jedusor posts a .onion link to a text
file on IRC and disappears. It describes “Mimblewimble”, an
enhanced variant of Maxwell’s Confidential Transactions, on
IRC and disappears

October 2016: “Ignotus Peverell” appears on IRC and
announces a project on Github to implement MimbleWimble.

November 2016-Present: yet more Harry Potter characters
have appeared and continue to develop the project

4 / 30



More History of Mimblewimble

After Ignotus Peverell appeared, we discussed practicalities
and found that aggregate signatures would give space savings
on top of the Voldemort scheme

January 2017: Ethan Heilman (of TumbleBit fame), Ruben
Somsen and myself discover that we could add a weak form of
scripting to MimbleWimble to get Lightning, atomic swaps,
Tumblebit, etc.

However, adding scripting to Mimblewimble would hurt its
otherwise perfect fungibility

These ideas evolve into “scriptless scripts”, a way to move the
script verification into the signatures themselves, simplifying
and hiding them

5 / 30



More History of Mimblewimble

January 2017: Tim Ruffing and Pedro Moreno-Sanchez
announce ValueShuffle, a method to securely combine
Confidential Transactions

April 2017: Blockstream announces Confidential Assets, I
publish a design I’d been sitting on for a multi-asset
Mimblewimble

May 2017: Luna Lovegood appears on the Mimblewimble list
to discuss ValueShuffle on Mimblewimble. In fact, Tim had
already been planning to work on this.

6 / 30



Mimblewimble Transactions

A Mimblewimble transaction is the following data:

Inputs (references to old outputs).

Outputs: confidential transaction outputs (group elements,
which blind and commit to amounts), plus rangeproofs.

Kernel: algebraically, difference between outputs and inputs
(group element); morally a multisignature key for all
transacting parties.

Kernel signature: proves the kernel is really a multisignature
key, and is not hiding any coins

7 / 30



Mimblewimble Transactions

8 / 30



Mimblewimble Transactions

9 / 30



Mimblewimble Transactions

10 / 30



Mimblewimble Transactions

11 / 30



Mimblewimble Transactions

12 / 30



Mimblewimble Transactions

13 / 30



Mimblewimble Transactions

14 / 30



Mimblewimble Transactions

15 / 30



Mimblewimble Scaling: Real Numbers

In Bitcoin there are 150 million transactions with about 350
million outputs, 45 million of which are unspent.

This takes about 100Gb of space on disk today; with CT this
would be over 1Tb!

MimbleWimble gives us CT and requires storing: 15Gb of
transaction kernels, headers etc.; 2Gb of unspent outputs, and
100Gb of UTXO rangeproofs.

In pre-segwit Bitcoin, none of this is separable “witness data”
which can be dropped in exchange for trust. In MW the
rangeproofs are, leaving less than 20Gb of normative
blockchain space.

16 / 30



“Scriptless Scripts”

Scriptless scripts: magicking digital signatures so that they
can only be created by faithful execution of a smart contract.

Limited in power, but not nearly as much as you might expect.

Mimblewimble is a blockchain design that supports only
scriptless scripts, and derives its privacy and scaling properties
from this.

17 / 30



Why use Scriptless Scripts?

Bitcoin (and Ethereum, etc.) uses a scripting language to
describe smart contracts and enforce their execution.

These scripts must be downloaded, parsed, validated by all full
nodes on the network. Can’t be compressed or aggregated.

The details of the script are visible forever, compromising
privacy and fungibility.

With scriptless scripts, the only visible things are public keys
(i.e. uniformly random curvepoints) and digital signatures.

18 / 30



Schnorr Signatures Support Scriptless Scripts

Schnorr signatures: signer has a keypair (x ,P).

A signature is the public half of an “ephemeral keypair” (k,R)
along with a linear equation in x and k . Equation depends on
the hash of a message.

Signature can be verified because the key-derivation map
x 7→ P is also linear.

ECDSA signatures (used in Bitcoin) have the same basic
shape but aren’t linear in x and k , so they are less useful.

19 / 30



Simplest (Sorta) Scriptless Script

OP RETURN outputs are used in Bitcoin to encode data for
purpose of timestamping.

Alternate: replace a public key P with P + Hash(P‖m)G .

Replacing the signer’s public key is called “pay to contract”
and is used by Elements and Liquid to move coins onto a
sidechain.

Replacing the ephemeral key is called “sign to contract”.
Used to attach a timestamp to an unrelated transaction with
zero network overhead.

20 / 30



Schnorr multi-Signatures are Scriptless Scripts

By adding Schnorr signature keys, a new key is obtained which
can only be signed with with the cooperation of all parties.

Can be generalized to m-of-n by all parties giving m-of-n
linear secret shares to all others so they can cooperatively
replace missing parties.

(Don’t try this at home: some extra precautions are needed to
prevent adversarial choice of keys.)

21 / 30



ZKCPs in Scriptless Script

Zero-Knowledge Contingent payments (Greg Maxwell):
sending coins conditioned on the recipient providing the
solution to some hard problem.

Recipient provides a hash H and a zk-proof that the preimage
is the encryption key to a valid solution. Sender puts coins in
a script that allows claimage by revealing the preimage.

Use the signature hash e in place of H and now you have a
scriptless script ZKCP: a single digital signature which cannot
be created without the signer solving some arbitrary (but
predetermined) problem for you.

Alternate: Banasik, Dziembowski and Malinowski (2016/451)

22 / 30



Simultaneous Scriptless Scripts

Executing separate transactions in an atomic fashion is
traditionally done with preimages: if two transactions require
the preimage to the same hash, once one is executed, the
preimage is exposed so that the other one can be too.

Atomic Swaps (Tier Nolan) and Lightning channels
(Poon/Dryja) use this construction.

“Use the message-hash as the hash” doesn’t work here to
scriptless-scriptify this because message hashes can’t be fixed
before a signature is created. Worse, this would link the two
transactions, violating the spirit of scriptless scripts.

23 / 30



Adaptor Signatures

Instead use another ephemeral keypair (t,T ) and treat T as
the “hash” of t.

When doing a multi-signature replace the old ephemeral key
R with R + T , and now the signature s must be replaced by
s + t to be valid.

Now the original s is an “adaptor signature”. Anyone with this
can compute a valid signature from t or vice-versa. They can
verify that it is an adaptor signature for T , no trust needed.

One can compute an adaptor signature without knowing t,
but they will then be unable to produce a real signature.

24 / 30



Atomic (Cross-chain) Swaps

Parties Alice and Bob send coins on their respective chains to
2-of-2 outputs. Bob thinks of a keypair (t,T ) and gives T to
Alice.

Before Alice signs to give Bob his coins, she demands adaptor
signatures with T from him for both his signatures: the one
taking his coins and the one giving her coins.

Now when Bob signs to take his coins, Alice learns t from one
adaptor signature, which she can combine with the other
adaptor signature to take her coins.

25 / 30



Basic Lightning

Suppose Alice is paying David through Bob and Carol. She
produces an onion-routed path

Alice → Bob → Carol → David

and asks for public keys B, C and D from each participant.

She sends coins to a 2-of-2 between her and Bob. She asks
Bob for an adaptor signature with B + C + D before signing
to send him the coins.

Similarly Bob sends coins to Carol, first demanding an adaptor
signature with C + D from her. Carol sends to David,
demanding an adaptor signature with D.

26 / 30



Features of Adaptor Signatures

Adaptor signatures work across blockchains, even if they use
different EC groups, though this requires a bit more work.

After a signature hits the chain, anyone can make up a (t,T )
and compute a corresponding “adaptor signature” for it, so
the scheme is deniable. It also does not link the signatures in
any way.

Adaptor signatures are re-blindable, as we saw in the
Lightning example. This is also deniable and unlinkable.

27 / 30



Sorceror’s Scriptless Script

Mimblewimble is the ultimate scriptless script.

Every input and output has a key, and a transaction signature
uses a multisignature of all these keys.

Transaction validity is now contained in a scriptless script;
further, the signature has be used with other scriptless script
constructions (atomic swaps, ZKCP, etc.) to add additional
validity requirements with zero overhead or even visibility to
the network.

28 / 30



Open Problems

Quantum-resistant Mimblewimble

Efficient / Aggregatable rangeproofs

Preserving scriptless scripts in multisig

ECDSA support

Locktimes and other extrospection

Formalizing/understanding limits of scriptless scripts

29 / 30



Thank You

Andrew Poelstra <grindelwald@wpsoftware.net>

30 / 30


