
Scriptless Scripts

Scriptless Scripts

Andrew Poelstra

grindelwald@wpsoftware.net

March 4, 2017



Scriptless Scripts

Introduction

“Scriptless Scripts”?

Scriptless scripts: magicking digital signatures so that they
can only be created by faithful execution of a smart contract.

Limited in power, but not nearly as much as you might expect

Mimblewimble is a blockchain design that supports only
scriptless scripts, and derives its privacy and scaling properties
from this.



Scriptless Scripts

Introduction

“Scriptless Scripts”?

Scriptless scripts: magicking digital signatures so that they
can only be created by faithful execution of a smart contract.

Limited in power, but not nearly as much as you might expect

Mimblewimble is a blockchain design that supports only
scriptless scripts, and derives its privacy and scaling properties
from this.



Scriptless Scripts

Introduction

“Scriptless Scripts”?

Scriptless scripts: magicking digital signatures so that they
can only be created by faithful execution of a smart contract.

Limited in power, but not nearly as much as you might expect

Mimblewimble is a blockchain design that supports only
scriptless scripts, and derives its privacy and scaling properties
from this.



Scriptless Scripts

Introduction

Why use Scriptless Scripts?

Bitcoin (and Ethereum, etc.) uses a scripting language to
describe smart contracts and enforce their execution

These scripts must be downloaded, parsed, validated by all
full nodes on the network.

Have little intrinsic structure to be compressed or aggregated

The details of the script are visible forever and compromise
privacy and fungibility.

With scriptless scripts, the only visible things are public keys
(i.e. uniformly random curvepoints) and digital signatures.



Scriptless Scripts

Introduction

Why use Scriptless Scripts?

Bitcoin (and Ethereum, etc.) uses a scripting language to
describe smart contracts and enforce their execution

These scripts must be downloaded, parsed, validated by all
full nodes on the network.

Have little intrinsic structure to be compressed or aggregated

The details of the script are visible forever and compromise
privacy and fungibility.

With scriptless scripts, the only visible things are public keys
(i.e. uniformly random curvepoints) and digital signatures.



Scriptless Scripts

Introduction

Why use Scriptless Scripts?

Bitcoin (and Ethereum, etc.) uses a scripting language to
describe smart contracts and enforce their execution

These scripts must be downloaded, parsed, validated by all
full nodes on the network.

Have little intrinsic structure to be compressed or aggregated

The details of the script are visible forever and compromise
privacy and fungibility.

With scriptless scripts, the only visible things are public keys
(i.e. uniformly random curvepoints) and digital signatures.



Scriptless Scripts

Introduction

Why use Scriptless Scripts?

Bitcoin (and Ethereum, etc.) uses a scripting language to
describe smart contracts and enforce their execution

These scripts must be downloaded, parsed, validated by all
full nodes on the network.

Have little intrinsic structure to be compressed or aggregated

The details of the script are visible forever and compromise
privacy and fungibility.

With scriptless scripts, the only visible things are public keys
(i.e. uniformly random curvepoints) and digital signatures.



Scriptless Scripts

Introduction

Why use Scriptless Scripts?

Bitcoin (and Ethereum, etc.) uses a scripting language to
describe smart contracts and enforce their execution

These scripts must be downloaded, parsed, validated by all
full nodes on the network.

Have little intrinsic structure to be compressed or aggregated

The details of the script are visible forever and compromise
privacy and fungibility.

With scriptless scripts, the only visible things are public keys
(i.e. uniformly random curvepoints) and digital signatures.



Scriptless Scripts

Introduction

Schnorr Signatures Support Scriptless Scripts

Schnorr signatures: signer has a secret key x , ephemeral
secret key k . Publishes a public key xG .

A signature is the ephemeral public key kG as well as

s = k − ex

where e = H(kG‖xG‖message).

Verified by checking

sG = kG − exG

ECDSA signatures (used in Bitcoin) have the same shape, but
s lacks some structure and e commits to only the message.



Scriptless Scripts

Introduction

Schnorr Signatures Support Scriptless Scripts

Schnorr signatures: signer has a secret key x , ephemeral
secret key k . Publishes a public key xG .

A signature is the ephemeral public key kG as well as

s = k − ex

where e = H(kG‖xG‖message).

Verified by checking

sG = kG − exG

ECDSA signatures (used in Bitcoin) have the same shape, but
s lacks some structure and e commits to only the message.



Scriptless Scripts

Introduction

Schnorr Signatures Support Scriptless Scripts

Schnorr signatures: signer has a secret key x , ephemeral
secret key k . Publishes a public key xG .

A signature is the ephemeral public key kG as well as

s = k − ex

where e = H(kG‖xG‖message).

Verified by checking

sG = kG − exG

ECDSA signatures (used in Bitcoin) have the same shape, but
s lacks some structure and e commits to only the message.



Scriptless Scripts

Introduction

Schnorr Signatures Support Scriptless Scripts

Schnorr signatures: signer has a secret key x , ephemeral
secret key k . Publishes a public key xG .

A signature is the ephemeral public key kG as well as

s = k − ex

where e = H(kG‖xG‖message).

Verified by checking

sG = kG − exG

ECDSA signatures (used in Bitcoin) have the same shape, but
s lacks some structure and e commits to only the message.



Scriptless Scripts

Scriptless scripts in the wild

Simplest (Sorta) Scriptless Script

OP RETURN outputs are used in Bitcoin to encode data for
purpose of timestamping

Instead, replace the public key (or emphemeral key) P with
P + Hash(P‖m)G .

Replacing the public key is called “pay to contract” and is
used by Elements and Liquid to move coins onto a sidechain.

Replacing the emphemeral key is called “sign to contract” and
can be used to append a message commitment in any ordinary
transaction with zero network overhead.

Works with Schnorr or ECDSA



Scriptless Scripts

Scriptless scripts in the wild

Simplest (Sorta) Scriptless Script

OP RETURN outputs are used in Bitcoin to encode data for
purpose of timestamping

Instead, replace the public key (or emphemeral key) P with
P + Hash(P‖m)G .

Replacing the public key is called “pay to contract” and is
used by Elements and Liquid to move coins onto a sidechain.

Replacing the emphemeral key is called “sign to contract” and
can be used to append a message commitment in any ordinary
transaction with zero network overhead.

Works with Schnorr or ECDSA



Scriptless Scripts

Scriptless scripts in the wild

Simplest (Sorta) Scriptless Script

OP RETURN outputs are used in Bitcoin to encode data for
purpose of timestamping

Instead, replace the public key (or emphemeral key) P with
P + Hash(P‖m)G .

Replacing the public key is called “pay to contract” and is
used by Elements and Liquid to move coins onto a sidechain.

Replacing the emphemeral key is called “sign to contract” and
can be used to append a message commitment in any ordinary
transaction with zero network overhead.

Works with Schnorr or ECDSA



Scriptless Scripts

Scriptless scripts in the wild

Simplest (Sorta) Scriptless Script

OP RETURN outputs are used in Bitcoin to encode data for
purpose of timestamping

Instead, replace the public key (or emphemeral key) P with
P + Hash(P‖m)G .

Replacing the public key is called “pay to contract” and is
used by Elements and Liquid to move coins onto a sidechain.

Replacing the emphemeral key is called “sign to contract” and
can be used to append a message commitment in any ordinary
transaction with zero network overhead.

Works with Schnorr or ECDSA



Scriptless Scripts

Scriptless scripts in the wild

Simplest (Sorta) Scriptless Script

OP RETURN outputs are used in Bitcoin to encode data for
purpose of timestamping

Instead, replace the public key (or emphemeral key) P with
P + Hash(P‖m)G .

Replacing the public key is called “pay to contract” and is
used by Elements and Liquid to move coins onto a sidechain.

Replacing the emphemeral key is called “sign to contract” and
can be used to append a message commitment in any ordinary
transaction with zero network overhead.

Works with Schnorr or ECDSA



Scriptless Scripts

Scriptless scripts in the wild

multi-Signatures in Scriptless Script

By adding Schnorr signature keys, a new key is obtained which
can only be signed with with the cooperation of all parties.

Can be generalized to m-of-n by all parties giving m-of-n
shares to all others so they can cooperatively replace missing
parties.

(Don’t try this at home: some extra precautions are needed to
prevent adversarial choice of keys.)

Works with Schnorr only.



Scriptless Scripts

Scriptless scripts in the wild

multi-Signatures in Scriptless Script

By adding Schnorr signature keys, a new key is obtained which
can only be signed with with the cooperation of all parties.

Can be generalized to m-of-n by all parties giving m-of-n
shares to all others so they can cooperatively replace missing
parties.

(Don’t try this at home: some extra precautions are needed to
prevent adversarial choice of keys.)

Works with Schnorr only.



Scriptless Scripts

Scriptless scripts in the wild

multi-Signatures in Scriptless Script

By adding Schnorr signature keys, a new key is obtained which
can only be signed with with the cooperation of all parties.

Can be generalized to m-of-n by all parties giving m-of-n
shares to all others so they can cooperatively replace missing
parties.

(Don’t try this at home: some extra precautions are needed to
prevent adversarial choice of keys.)

Works with Schnorr only.



Scriptless Scripts

Scriptless scripts in the wild

multi-Signatures in Scriptless Script

By adding Schnorr signature keys, a new key is obtained which
can only be signed with with the cooperation of all parties.

Can be generalized to m-of-n by all parties giving m-of-n
shares to all others so they can cooperatively replace missing
parties.

(Don’t try this at home: some extra precautions are needed to
prevent adversarial choice of keys.)

Works with Schnorr only.



Scriptless Scripts

Scriptless scripts in the wild

moSt exSpressive Scriptless Script

Zero-Knowledge Contingent payments: sending coins
conditioned on the recipient providing the solution to some
hard problem.

Recipient provides a hash H and a zk-proof that the preimage
is the encryption key to a valid solution. Sender puts coins in
a script that allows claimage by revealing the preimage.

Use the signature hash e in place of H and now you have a
scriptless script ZKCP: a single digital signature which cannot
be created without the signer solving some arbitrary (but
predetermined) problem for you.

Must be done as a multisig between sender and receiver so
that the sender can enforce what e is.



Scriptless Scripts

Scriptless scripts in the wild

moSt exSpressive Scriptless Script

Zero-Knowledge Contingent payments: sending coins
conditioned on the recipient providing the solution to some
hard problem.

Recipient provides a hash H and a zk-proof that the preimage
is the encryption key to a valid solution. Sender puts coins in
a script that allows claimage by revealing the preimage.

Use the signature hash e in place of H and now you have a
scriptless script ZKCP: a single digital signature which cannot
be created without the signer solving some arbitrary (but
predetermined) problem for you.

Must be done as a multisig between sender and receiver so
that the sender can enforce what e is.



Scriptless Scripts

Scriptless scripts in the wild

moSt exSpressive Scriptless Script

Zero-Knowledge Contingent payments: sending coins
conditioned on the recipient providing the solution to some
hard problem.

Recipient provides a hash H and a zk-proof that the preimage
is the encryption key to a valid solution. Sender puts coins in
a script that allows claimage by revealing the preimage.

Use the signature hash e in place of H and now you have a
scriptless script ZKCP: a single digital signature which cannot
be created without the signer solving some arbitrary (but
predetermined) problem for you.

Must be done as a multisig between sender and receiver so
that the sender can enforce what e is.



Scriptless Scripts

Scriptless scripts in the wild

moSt exSpressive Scriptless Script

Zero-Knowledge Contingent payments: sending coins
conditioned on the recipient providing the solution to some
hard problem.

Recipient provides a hash H and a zk-proof that the preimage
is the encryption key to a valid solution. Sender puts coins in
a script that allows claimage by revealing the preimage.

Use the signature hash e in place of H and now you have a
scriptless script ZKCP: a single digital signature which cannot
be created without the signer solving some arbitrary (but
predetermined) problem for you.

Must be done as a multisig between sender and receiver so
that the sender can enforce what e is.



Scriptless Scripts

Scriptless scripts in the wild

Simultaneous Scriptless Scripts

Executing separate transactions in an atomic fashion is
traditionally done with preimages: if two transactions require
the preimage to the same hash, once one is executed, the
preimage is exposed so that the other one can be too.

Atomic Swaps and Lightning channels use this construction.

The previous hash-preimage construction doesn’t work
because a signature hash can’t be controlled like this, plus it
would require nonce-reuse (breaking the signature security),
plus it would link the two transactions, which violates the
spirit of scriptless scipts.



Scriptless Scripts

Scriptless scripts in the wild

Simultaneous Scriptless Scripts

Executing separate transactions in an atomic fashion is
traditionally done with preimages: if two transactions require
the preimage to the same hash, once one is executed, the
preimage is exposed so that the other one can be too.

Atomic Swaps and Lightning channels use this construction.

The previous hash-preimage construction doesn’t work
because a signature hash can’t be controlled like this, plus it
would require nonce-reuse (breaking the signature security),
plus it would link the two transactions, which violates the
spirit of scriptless scipts.



Scriptless Scripts

Scriptless scripts in the wild

Simultaneous Scriptless Scripts

Executing separate transactions in an atomic fashion is
traditionally done with preimages: if two transactions require
the preimage to the same hash, once one is executed, the
preimage is exposed so that the other one can be too.

Atomic Swaps and Lightning channels use this construction.

The previous hash-preimage construction doesn’t work
because a signature hash can’t be controlled like this, plus it
would require nonce-reuse (breaking the signature security),
plus it would link the two transactions, which violates the
spirit of scriptless scipts.



Scriptless Scripts

Scriptless scripts in the wild

Simultaneous Scriptless Scripts

Instead what we do is consider the difference of two Schnorr
signatures:

d = s − s ′ = k − k ′ + ex − e ′x ′

Given kG , k ′G , e, e ′ this construction can be verified as

dG = kG − k ′G + exG − e ′x ′G

Given d and either s or s ′, the other can be computed. So
possession of d makes these two signatures atomic!

But since d is computable by anybody after s, s ′ are available,
this scheme does nothing to link the two signatures or harm
their security.



Scriptless Scripts

Scriptless scripts in the wild

Simultaneous Scriptless Scripts

Instead what we do is consider the difference of two Schnorr
signatures:

d = s − s ′ = k − k ′ + ex − e ′x ′

Given kG , k ′G , e, e ′ this construction can be verified as

dG = kG − k ′G + exG − e ′x ′G

Given d and either s or s ′, the other can be computed. So
possession of d makes these two signatures atomic!

But since d is computable by anybody after s, s ′ are available,
this scheme does nothing to link the two signatures or harm
their security.



Scriptless Scripts

Scriptless scripts in the wild

Simultaneous Scriptless Scripts

Instead what we do is consider the difference of two Schnorr
signatures:

d = s − s ′ = k − k ′ + ex − e ′x ′

Given kG , k ′G , e, e ′ this construction can be verified as

dG = kG − k ′G + exG − e ′x ′G

Given d and either s or s ′, the other can be computed. So
possession of d makes these two signatures atomic!

But since d is computable by anybody after s, s ′ are available,
this scheme does nothing to link the two signatures or harm
their security.



Scriptless Scripts

Scriptless scripts in the wild

Simultaneous Scriptless Scripts

Instead what we do is consider the difference of two Schnorr
signatures:

d = s − s ′ = k − k ′ + ex − e ′x ′

Given kG , k ′G , e, e ′ this construction can be verified as

dG = kG − k ′G + exG − e ′x ′G

Given d and either s or s ′, the other can be computed. So
possession of d makes these two signatures atomic!

But since d is computable by anybody after s, s ′ are available,
this scheme does nothing to link the two signatures or harm
their security.



Scriptless Scripts

Scriptless scripts in the wild

Sorceror’s Scriptless Script

MimbleWimble is the ultimate scriptless script.

Every input and output has a key (actually a Pedersen
commitment, but the transaction balances exactly when these
commitment behave like keys; this trick is Confidential
Transactions).

A transaction signature uses the multisignature key of all
input and output keys (called a “kernel” in MimbleWimble
parlance). It is irrelevant what gets signed, just that
something is.

Transaction validity is now contained in a scriptless script;
further, the signature has be used with other scriptless script
constructions (atomic swaps, ZKCP, etc.) to add additional
validity requirements with zero overhead.



Scriptless Scripts

Scriptless scripts in the wild

Sorceror’s Scriptless Script

MimbleWimble is the ultimate scriptless script.

Every input and output has a key (actually a Pedersen
commitment, but the transaction balances exactly when these
commitment behave like keys; this trick is Confidential
Transactions).

A transaction signature uses the multisignature key of all
input and output keys (called a “kernel” in MimbleWimble
parlance). It is irrelevant what gets signed, just that
something is.

Transaction validity is now contained in a scriptless script;
further, the signature has be used with other scriptless script
constructions (atomic swaps, ZKCP, etc.) to add additional
validity requirements with zero overhead.



Scriptless Scripts

Scriptless scripts in the wild

Sorceror’s Scriptless Script

MimbleWimble is the ultimate scriptless script.

Every input and output has a key (actually a Pedersen
commitment, but the transaction balances exactly when these
commitment behave like keys; this trick is Confidential
Transactions).

A transaction signature uses the multisignature key of all
input and output keys (called a “kernel” in MimbleWimble
parlance). It is irrelevant what gets signed, just that
something is.

Transaction validity is now contained in a scriptless script;
further, the signature has be used with other scriptless script
constructions (atomic swaps, ZKCP, etc.) to add additional
validity requirements with zero overhead.



Scriptless Scripts

Scriptless scripts in the wild

Sorceror’s Scriptless Script

MimbleWimble is the ultimate scriptless script.

Every input and output has a key (actually a Pedersen
commitment, but the transaction balances exactly when these
commitment behave like keys; this trick is Confidential
Transactions).

A transaction signature uses the multisignature key of all
input and output keys (called a “kernel” in MimbleWimble
parlance). It is irrelevant what gets signed, just that
something is.

Transaction validity is now contained in a scriptless script;
further, the signature has be used with other scriptless script
constructions (atomic swaps, ZKCP, etc.) to add additional
validity requirements with zero overhead.



Scriptless Scripts

Conclusion

Open Problems

Generic scriptless scripts

Locktimes or other extrospection



Scriptless Scripts

Conclusion

Open Problems

Generic scriptless scripts

Locktimes or other extrospection



Scriptless Scripts

Conclusion

Thank You

Andrew Poelstra <grindelwald@wpsoftware.net>


	Scriptless Scripts
	Introduction
	Scriptless scripts in the wild
	Conclusion


