
Mimblewimble: Private, Massively-Prunable
Blockchains

Andrew Poelstra

grindelwald@wpsoftware.net

October 8, 2016

1 / 57



History

04:30 UTC, August 2nd, 2016: “Tom Elvis Jedusor” posts a
.onion link to a text file on IRC, titled MIMBLEWIMBLE and
dated July 19.

Next morning: myself and Bryan Bishop verify it’s actually
just text and rehost it.

(Previous week: I had independently found a small part of
Mimblewimble which was almost supported by Elements
Alpha; starting from this I got the gist of the paper.)

Following week: discussion on Reddit with Greg Sanders and
others leads to understanding Mimblewimble’s trust model,
and hints that the new crypto has merit.

September: myself and Avi Kulkarni develop an extension,
“sinking signatures”, to greatly improve its scaling properties.

I am not Lord Voldemort.

2 / 57



History

04:30 UTC, August 2nd, 2016: “Tom Elvis Jedusor” posts a
.onion link to a text file on IRC, titled MIMBLEWIMBLE and
dated July 19.

Next morning: myself and Bryan Bishop verify it’s actually
just text and rehost it.

(Previous week: I had independently found a small part of
Mimblewimble which was almost supported by Elements
Alpha; starting from this I got the gist of the paper.)

Following week: discussion on Reddit with Greg Sanders and
others leads to understanding Mimblewimble’s trust model,
and hints that the new crypto has merit.

September: myself and Avi Kulkarni develop an extension,
“sinking signatures”, to greatly improve its scaling properties.

I am not Lord Voldemort.

3 / 57



History

04:30 UTC, August 2nd, 2016: “Tom Elvis Jedusor” posts a
.onion link to a text file on IRC, titled MIMBLEWIMBLE and
dated July 19.

Next morning: myself and Bryan Bishop verify it’s actually
just text and rehost it.

(Previous week: I had independently found a small part of
Mimblewimble which was almost supported by Elements
Alpha; starting from this I got the gist of the paper.)

Following week: discussion on Reddit with Greg Sanders and
others leads to understanding Mimblewimble’s trust model,
and hints that the new crypto has merit.

September: myself and Avi Kulkarni develop an extension,
“sinking signatures”, to greatly improve its scaling properties.

I am not Lord Voldemort.

4 / 57



History

04:30 UTC, August 2nd, 2016: “Tom Elvis Jedusor” posts a
.onion link to a text file on IRC, titled MIMBLEWIMBLE and
dated July 19.

Next morning: myself and Bryan Bishop verify it’s actually
just text and rehost it.

(Previous week: I had independently found a small part of
Mimblewimble which was almost supported by Elements
Alpha; starting from this I got the gist of the paper.)

Following week: discussion on Reddit with Greg Sanders and
others leads to understanding Mimblewimble’s trust model,
and hints that the new crypto has merit.

September: myself and Avi Kulkarni develop an extension,
“sinking signatures”, to greatly improve its scaling properties.

I am not Lord Voldemort.

5 / 57



History

04:30 UTC, August 2nd, 2016: “Tom Elvis Jedusor” posts a
.onion link to a text file on IRC, titled MIMBLEWIMBLE and
dated July 19.

Next morning: myself and Bryan Bishop verify it’s actually
just text and rehost it.

(Previous week: I had independently found a small part of
Mimblewimble which was almost supported by Elements
Alpha; starting from this I got the gist of the paper.)

Following week: discussion on Reddit with Greg Sanders and
others leads to understanding Mimblewimble’s trust model,
and hints that the new crypto has merit.

September: myself and Avi Kulkarni develop an extension,
“sinking signatures”, to greatly improve its scaling properties.

I am not Lord Voldemort.

6 / 57



History

04:30 UTC, August 2nd, 2016: “Tom Elvis Jedusor” posts a
.onion link to a text file on IRC, titled MIMBLEWIMBLE and
dated July 19.

Next morning: myself and Bryan Bishop verify it’s actually
just text and rehost it.

(Previous week: I had independently found a small part of
Mimblewimble which was almost supported by Elements
Alpha; starting from this I got the gist of the paper.)

Following week: discussion on Reddit with Greg Sanders and
others leads to understanding Mimblewimble’s trust model,
and hints that the new crypto has merit.

September: myself and Avi Kulkarni develop an extension,
“sinking signatures”, to greatly improve its scaling properties.

I am not Lord Voldemort.

7 / 57



What is Mimblewimble?

Mimblewimble is a design for a blockchain-based ledger that is
very different from Bitcoin.

It can be implemented as a sidechain, or softforked into
Bitcoin (with limitations).

In Bitcoin transactions, old outputs sign new outputs; outputs
have “script pubkeys” that are independent of each other. In
Mimblewimble transactions, outputs have only EC pubkeys,
and the difference between new outputs’ keys and old ones’ is
multisigned by all transacting parties.

Mimblewimble transactions are inherently scriptless.

8 / 57



What is Mimblewimble?

Mimblewimble is a design for a blockchain-based ledger that is
very different from Bitcoin.

It can be implemented as a sidechain, or softforked into
Bitcoin (with limitations).

In Bitcoin transactions, old outputs sign new outputs; outputs
have “script pubkeys” that are independent of each other. In
Mimblewimble transactions, outputs have only EC pubkeys,
and the difference between new outputs’ keys and old ones’ is
multisigned by all transacting parties.

Mimblewimble transactions are inherently scriptless.

9 / 57



What is Mimblewimble?

Mimblewimble is a design for a blockchain-based ledger that is
very different from Bitcoin.

It can be implemented as a sidechain, or softforked into
Bitcoin (with limitations).

In Bitcoin transactions, old outputs sign new outputs; outputs
have “script pubkeys” that are independent of each other. In
Mimblewimble transactions, outputs have only EC pubkeys,
and the difference between new outputs’ keys and old ones’ is
multisigned by all transacting parties.

Mimblewimble transactions are inherently scriptless.

10 / 57



What is Mimblewimble?

Mimblewimble is a design for a blockchain-based ledger that is
very different from Bitcoin.

It can be implemented as a sidechain, or softforked into
Bitcoin (with limitations).

In Bitcoin transactions, old outputs sign new outputs; outputs
have “script pubkeys” that are independent of each other. In
Mimblewimble transactions, outputs have only EC pubkeys,
and the difference between new outputs’ keys and old ones’ is
multisigned by all transacting parties.

Mimblewimble transactions are inherently scriptless.

11 / 57



Mimblewimble Transactions

A Mimblewimble transaction is the following data:

Inputs (references to old outputs).

Outputs: confidential transaction outputs (group elements,
which blind and commit to amounts), plus rangeproofs.

Excess: difference between outputs and inputs (group
element), plus signature (for authentication and to prove
non-infaltion)

12 / 57



Mimblewimble Transactions

A Mimblewimble transaction is the following data:

Inputs (references to old outputs).

Outputs: confidential transaction outputs (group elements,
which blind and commit to amounts), plus rangeproofs.

Excess: difference between outputs and inputs (group
element), plus signature (for authentication and to prove
non-infaltion)

13 / 57



Mimblewimble Transactions

A Mimblewimble transaction is the following data:

Inputs (references to old outputs).

Outputs: confidential transaction outputs (group elements,
which blind and commit to amounts), plus rangeproofs.

Excess: difference between outputs and inputs (group
element), plus signature (for authentication and to prove
non-infaltion)

14 / 57



Mimblewimble Transactions

15 / 57



Mimblewimble Transactions

16 / 57



Mimblewimble Transactions

17 / 57



Mimblewimble Transactions

18 / 57



Mimblewimble Transactions

19 / 57



Mimblewimble Blocks

Blocks consist of:

A merkle tree of transaction inputs.

A merkle tree of transaction outputs and rangeproofs.

A list of excess value(s) and signature(s)

20 / 57



Mimblewimble Blocks

Blocks consist of:

A merkle tree of transaction inputs.

A merkle tree of transaction outputs and rangeproofs.

A list of excess value(s) and signature(s)

21 / 57



Mimblewimble Blocks

Blocks consist of:

A merkle tree of transaction inputs.

A merkle tree of transaction outputs and rangeproofs.

A list of excess value(s) and signature(s)

22 / 57



Mimblewimble Transactions

23 / 57



Mimblewimble Transactions

24 / 57



Mimblewimble Transactions

25 / 57



Mimblewimble Transactions

26 / 57



Trust Model: Transactions

A transaction is valid if:

It is non-inflationary (total input amount equals total output
amount)

The owner of the input(s) has signed off on it.

27 / 57



Trust Model: Transactions

A transaction is valid if:

It is non-inflationary (total input amount equals total output
amount)

The owner of the input(s) has signed off on it.

28 / 57



Trust Model: Transactions

A transaction is valid if:

It is non-inflationary (total input amount equals total output
amount)

The owner of the input(s) has signed off on it.

29 / 57



Trust Model: Blockchain

It should be verifiable that

A transaction, once committed to a block, cannot be reversed
without doing enough work to rewrite the block (and all its
descendants).

The current state of all coins reflects zero net theft and
inflation.

The exact historical sequence of transactions does not need to
be publicly verifable.

30 / 57



Trust Model: Blockchain

It should be verifiable that

A transaction, once committed to a block, cannot be reversed
without doing enough work to rewrite the block (and all its
descendants).

The current state of all coins reflects zero net theft and
inflation.

The exact historical sequence of transactions does not need to
be publicly verifable.

31 / 57



Trust Model: Blockchain

It should be verifiable that

A transaction, once committed to a block, cannot be reversed
without doing enough work to rewrite the block (and all its
descendants).

The current state of all coins reflects zero net theft and
inflation.

The exact historical sequence of transactions does not need to
be publicly verifable.

32 / 57



Trust Model: Blockchain

It should be verifiable that

A transaction, once committed to a block, cannot be reversed
without doing enough work to rewrite the block (and all its
descendants).

The current state of all coins reflects zero net theft and
inflation.

The exact historical sequence of transactions does not need to
be publicly verifable.

33 / 57



Trust Model: Block Verification

It is possible to verify the blockchain with only the following data:

Block headers

Unspent outputs from each block

Excess values and signatures.

Rangeproofs for the above (witness data)

Full blocks near the tip should be kept to handle reorgs

In Bitcoin there are 150 million transactions and 40 million
unsigned transaction outputs: 21.6Gb of historic data, 2Gb of
UTXOs and 100Gb of UTXO rangeproofs.

34 / 57



Trust Model: Block Verification

It is possible to verify the blockchain with only the following data:

Block headers

Unspent outputs from each block

Excess values and signatures.

Rangeproofs for the above (witness data)

Full blocks near the tip should be kept to handle reorgs

In Bitcoin there are 150 million transactions and 40 million
unsigned transaction outputs: 21.6Gb of historic data, 2Gb of
UTXOs and 100Gb of UTXO rangeproofs.

35 / 57



Trust Model: Block Verification

It is possible to verify the blockchain with only the following data:

Block headers

Unspent outputs from each block

Excess values and signatures.

Rangeproofs for the above (witness data)

Full blocks near the tip should be kept to handle reorgs

In Bitcoin there are 150 million transactions and 40 million
unsigned transaction outputs: 21.6Gb of historic data, 2Gb of
UTXOs and 100Gb of UTXO rangeproofs.

36 / 57



Trust Model: Block Verification

It is possible to verify the blockchain with only the following data:

Block headers

Unspent outputs from each block

Excess values and signatures.

Rangeproofs for the above (witness data)

Full blocks near the tip should be kept to handle reorgs

In Bitcoin there are 150 million transactions and 40 million
unsigned transaction outputs: 21.6Gb of historic data, 2Gb of
UTXOs and 100Gb of UTXO rangeproofs.

37 / 57



Trust Model: Block Verification

It is possible to verify the blockchain with only the following data:

Block headers

Unspent outputs from each block

Excess values and signatures.

Rangeproofs for the above (witness data)

Full blocks near the tip should be kept to handle reorgs

In Bitcoin there are 150 million transactions and 40 million
unsigned transaction outputs: 21.6Gb of historic data, 2Gb of
UTXOs and 100Gb of UTXO rangeproofs.

38 / 57



Trust Model: Block Verification

It is possible to verify the blockchain with only the following data:

Block headers

Unspent outputs from each block

Excess values and signatures.

Rangeproofs for the above (witness data)

Full blocks near the tip should be kept to handle reorgs

In Bitcoin there are 150 million transactions and 40 million
unsigned transaction outputs: 21.6Gb of historic data, 2Gb of
UTXOs and 100Gb of UTXO rangeproofs.

39 / 57



Sinking Signatures

Open problem 2 from the Voldemort paper: can we aggregate
excess signatures?

Difficult to do without also making them negatable in later
blocks. (If you can add you can subtract.)

We can by using pairings and (a variant of)
Boneh-Lynn-Shacham signatures which sign the current block
height.

Now only one excess and (multi-)signature per block.

In Bitcoin there are 450000 blocks: so 22Mb of historic data
(but 450k pairings to verify), 2Gb of UTXO and 100Gb of
rangeproofs.

40 / 57



Sinking Signatures

Open problem 2 from the Voldemort paper: can we aggregate
excess signatures?

Difficult to do without also making them negatable in later
blocks. (If you can add you can subtract.)

We can by using pairings and (a variant of)
Boneh-Lynn-Shacham signatures which sign the current block
height.

Now only one excess and (multi-)signature per block.

In Bitcoin there are 450000 blocks: so 22Mb of historic data
(but 450k pairings to verify), 2Gb of UTXO and 100Gb of
rangeproofs.

41 / 57



Sinking Signatures

Open problem 2 from the Voldemort paper: can we aggregate
excess signatures?

Difficult to do without also making them negatable in later
blocks. (If you can add you can subtract.)

We can by using pairings and (a variant of)
Boneh-Lynn-Shacham signatures which sign the current block
height.

Now only one excess and (multi-)signature per block.

In Bitcoin there are 450000 blocks: so 22Mb of historic data
(but 450k pairings to verify), 2Gb of UTXO and 100Gb of
rangeproofs.

42 / 57



Sinking Signatures

Open problem 2 from the Voldemort paper: can we aggregate
excess signatures?

Difficult to do without also making them negatable in later
blocks. (If you can add you can subtract.)

We can by using pairings and (a variant of)
Boneh-Lynn-Shacham signatures which sign the current block
height.

Now only one excess and (multi-)signature per block.

In Bitcoin there are 450000 blocks: so 22Mb of historic data
(but 450k pairings to verify), 2Gb of UTXO and 100Gb of
rangeproofs.

43 / 57



Sinking Signatures

What if we could combine blocks as well?

It is possible to compress a chain of blockheaders to
logarithmic size while still having a proof that takes the same
expected work as the original [Back et. al. 2014; Kiayias,
Lamprou, Stouka 2016].

Treat the blockchain as a “skiplist” where blocks have distant
parents.

If excess values signed the current height and previous
heights, the excesses and signatures can be combined for
skipped blocks.

This is a sinking signature, which can be made log-sized.
[Poelstra, Kulkarni 2016]

Simulations show a 500000-block chain can likely be
compressed to 300 blocks. We now have 1Mb of historic data
(20 seconds on one core to verify), 2Gb of UTXO and 100Gb
of rangeproofs.

44 / 57



Sinking Signatures

What if we could combine blocks as well?

It is possible to compress a chain of blockheaders to
logarithmic size while still having a proof that takes the same
expected work as the original [Back et. al. 2014; Kiayias,
Lamprou, Stouka 2016].

Treat the blockchain as a “skiplist” where blocks have distant
parents.

If excess values signed the current height and previous
heights, the excesses and signatures can be combined for
skipped blocks.

This is a sinking signature, which can be made log-sized.
[Poelstra, Kulkarni 2016]

Simulations show a 500000-block chain can likely be
compressed to 300 blocks. We now have 1Mb of historic data
(20 seconds on one core to verify), 2Gb of UTXO and 100Gb
of rangeproofs.

45 / 57



Sinking Signatures

What if we could combine blocks as well?

It is possible to compress a chain of blockheaders to
logarithmic size while still having a proof that takes the same
expected work as the original [Back et. al. 2014; Kiayias,
Lamprou, Stouka 2016].

Treat the blockchain as a “skiplist” where blocks have distant
parents.

If excess values signed the current height and previous
heights, the excesses and signatures can be combined for
skipped blocks.

This is a sinking signature, which can be made log-sized.
[Poelstra, Kulkarni 2016]

Simulations show a 500000-block chain can likely be
compressed to 300 blocks. We now have 1Mb of historic data
(20 seconds on one core to verify), 2Gb of UTXO and 100Gb
of rangeproofs.

46 / 57



Sinking Signatures

What if we could combine blocks as well?

It is possible to compress a chain of blockheaders to
logarithmic size while still having a proof that takes the same
expected work as the original [Back et. al. 2014; Kiayias,
Lamprou, Stouka 2016].

Treat the blockchain as a “skiplist” where blocks have distant
parents.

If excess values signed the current height and previous
heights, the excesses and signatures can be combined for
skipped blocks.

This is a sinking signature, which can be made log-sized.
[Poelstra, Kulkarni 2016]

Simulations show a 500000-block chain can likely be
compressed to 300 blocks. We now have 1Mb of historic data
(20 seconds on one core to verify), 2Gb of UTXO and 100Gb
of rangeproofs.

47 / 57



Sinking Signatures

What if we could combine blocks as well?

It is possible to compress a chain of blockheaders to
logarithmic size while still having a proof that takes the same
expected work as the original [Back et. al. 2014; Kiayias,
Lamprou, Stouka 2016].

Treat the blockchain as a “skiplist” where blocks have distant
parents.

If excess values signed the current height and previous
heights, the excesses and signatures can be combined for
skipped blocks.

This is a sinking signature, which can be made log-sized.
[Poelstra, Kulkarni 2016]

Simulations show a 500000-block chain can likely be
compressed to 300 blocks. We now have 1Mb of historic data
(20 seconds on one core to verify), 2Gb of UTXO and 100Gb
of rangeproofs.

48 / 57



Trust Model: Blockchain verifitation, redox

Compact chains have same expected work to produce but
much higher variance than the original chain.

With nontrivial probability a compact chain can be produced
in less work than one block; thus compact chains prove no
work.

We thus distinguish between expected work which affects
economic incentives for forgeries, and proven work which
assures a verifier an historic fact about how a chain was
produced.

Mimblewimble verifiers should demand a month or two of
non-compact blocks on top of a compact chain. This proves a
month or two of work, but a forger expects to do as much
work as the entire chain. So no “incentive cliff” and verifiers
can also be assured that their chain was no accident.

49 / 57



Trust Model: Blockchain verifitation, redox

Compact chains have same expected work to produce but
much higher variance than the original chain.

With nontrivial probability a compact chain can be produced
in less work than one block; thus compact chains prove no
work.

We thus distinguish between expected work which affects
economic incentives for forgeries, and proven work which
assures a verifier an historic fact about how a chain was
produced.

Mimblewimble verifiers should demand a month or two of
non-compact blocks on top of a compact chain. This proves a
month or two of work, but a forger expects to do as much
work as the entire chain. So no “incentive cliff” and verifiers
can also be assured that their chain was no accident.

50 / 57



Trust Model: Blockchain verifitation, redox

Compact chains have same expected work to produce but
much higher variance than the original chain.

With nontrivial probability a compact chain can be produced
in less work than one block; thus compact chains prove no
work.

We thus distinguish between expected work which affects
economic incentives for forgeries, and proven work which
assures a verifier an historic fact about how a chain was
produced.

Mimblewimble verifiers should demand a month or two of
non-compact blocks on top of a compact chain. This proves a
month or two of work, but a forger expects to do as much
work as the entire chain. So no “incentive cliff” and verifiers
can also be assured that their chain was no accident.

51 / 57



Trust Model: Blockchain verifitation, redox

Compact chains have same expected work to produce but
much higher variance than the original chain.

With nontrivial probability a compact chain can be produced
in less work than one block; thus compact chains prove no
work.

We thus distinguish between expected work which affects
economic incentives for forgeries, and proven work which
assures a verifier an historic fact about how a chain was
produced.

Mimblewimble verifiers should demand a month or two of
non-compact blocks on top of a compact chain. This proves a
month or two of work, but a forger expects to do as much
work as the entire chain. So no “incentive cliff” and verifiers
can also be assured that their chain was no accident.

52 / 57



Next Steps

Development, development, development!

Nail down chain parameters, in particular choice of
pairing-friendly curve.

Sidechain?

53 / 57



Next Steps

Development, development, development!

Nail down chain parameters, in particular choice of
pairing-friendly curve.

Sidechain?

54 / 57



Next Steps

Development, development, development!

Nail down chain parameters, in particular choice of
pairing-friendly curve.

Sidechain?

55 / 57



Open Problems

Smaller rangeproofs? Aggregation of rangeproofs?

Peer-to-peer protocol that can handle transaction merging

Quantum resistance

56 / 57



Open Problems

Smaller rangeproofs? Aggregation of rangeproofs?

Peer-to-peer protocol that can handle transaction merging

Quantum resistance

57 / 57



Open Problems

Smaller rangeproofs? Aggregation of rangeproofs?

Peer-to-peer protocol that can handle transaction merging

Quantum resistance

58 / 57



Thank You

Andrew Poelstra <grindelwald@wpsoftware.net>

59 / 57


