Anti-Exfiltration for EC Signatures

Andrew Poelstra
Director, Blockstream Research
May 3, 2023

) Blockstream

EC Signatures

Valid EC signatures are linear equations in two secret variables:
s=kG+e- -xG

One equation, two unknowns:
» (permanent) secret key

» (ephemeral) secret nonce

Nonce Reuse

P> Reusing an nonce immediately gives “two equations, two unknowns” which can be
solved for the secret key

» Even slight deviations from uniform can be solved (Henninger/Breitner 2019)
» Deviations can be hidden so that only a specific attacker can exploit them

It is essential that nonces be generated uniformly at random! But if a hardware wallet
is generating the randomness, a user has no way to verify this.

Solutions

» Deterministic nonces (RFC6979) prevent accidental nonce bias/reuse.

» But provide no way for the user to verify whether it was used.

Solutions

» ZKP's could provide assurance that DN was used (NSRW 2020, “Musig-DN")
» But ZKPs are verify expensive to run on limited hardware.
> Also complex, have more room for implementation faults

» And anyway typical ZKPs have their own nonces that could be biased!

Solutions

» Multisigning with the host computer would re-randomize the nonce
» But requires the host manage a key (or user manage a passphrase)
> Needs to be designed with nonce de-biasing in mind

» Implementation complexity

Solutions

> But the multisig idea is basically the right idea

» Suppose the host provides only a nonce contribution, not a key contribution (so
not really multisig)

» This contribution can be random and thrown away after use

Anti-Exfiltration

» Our solution is called anti-exfil

» The host provides a random challenge; the HWW tweaks its nonce to commit to
the challenge; the host verifies the tweak

P> The tweaking completely re-randomizes the nonce, eliminating any bias

P> As long as an attacker hasn't compromised the HWW and the host, he cannot
extract any information

[bonus] Technical Problems

Two-party signature construction schemes need to avoid several pitfalls of naive
implementations:
» If host provides randomness first, can the HWW grind its untweaked nonce to bias
the final nonce?
» If HWW provides an untweaked nonce first, can the host bias the nonce?
> |If the HWW goes first, and is deterministic, can the host ask for two signatures
with different tweak,s extracting the secret key?
» Can the host verify that the tweaking was done correctly (the whole point of this
scheme :))?

[bonus] Technical Solution

These problems are solved by the following protocol:

>
>

The host chooses random data and sends a commitment to the HWW.

The HWW feeds this commitment, with its secret key and message, into a
deterministic nonce function to produce an untweaked nonce. It sends this nonce
to the host.

The host sends the actual randomness to the HWW.

The HWW verifies the randomness matches the commitment, then tweaks its
nonce (using P — P+ H(P||r)), and generates a signature.

The host verifies that the resulting signature uses the correct tweaked nonce.

Thank you

More information, and links to implementations, are at
https://blog.blockstream.com/anti-exfil-stopping-key-exfiltration/

A toy implementation /example from 2017 can be seen at
https://github.com/opentimestamps/python-opentimestamps/pull/14

| am Andrew Poelstra andrew@blockstream.com

https://blog.blockstream.com/anti-exfil-stopping-key-exfiltration/
https://github.com/opentimestamps/python-opentimestamps/pull/14

